Elliptic Weighted Problem with Indefinite Asymptotically Linear Nonlinearity
نویسندگان
چکیده
منابع مشابه
Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations
In this paper, we investigate the existence of positive solutions for the ellipticequation $Delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $Omega$ of $R^{n}$, $ngeq2$, with Navier boundary conditions. We show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملbifurcation problem for biharmonic asymptotically linear elliptic equations
in this paper, we investigate the existence of positive solutions for the ellipticequation $delta^{2},u+c(x)u = lambda f(u)$ on a bounded smooth domain $omega$ of $r^{n}$, $ngeq2$, with navier boundary conditions. we show that there exists an extremal parameter$lambda^{ast}>0$ such that for $lambda< lambda^{ast}$, the above problem has a regular solution butfor $lambda> lambda^{ast}$, the probl...
متن کاملOn an Asymptotically Linear Elliptic Dirichlet Problem
where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω. The conditions imposed on f (x, t) are as follows: (f1) f ∈ C(Ω×R,R); f (x,0) = 0, for all x ∈Ω. (f2) lim|t|→0( f (x, t)/t) = μ, lim|t|→∞( f (x, t)/t) = uniformly in x ∈Ω. Since we assume (f2), problem (1.1) is called asymptotically linear at both zero and infinity. This kind of problems have captured great interest since the pi...
متن کاملSolutions of Semilinear Elliptic Equations with Asymptotic Linear Nonlinearity
In this paper, we consider some semilinear elliptic equations with asymptotic linear nonlinearity and show the existence, uniqueness, and asymptotic behavior of these solutions.
متن کاملA Semilinear Fourth Order Elliptic Problem with Exponential Nonlinearity
We study a semilinear fourth order elliptic problem with exponential nonlinearity. Motivated by a question raised in [Li], we partially extend known results for the corresponding second order problem. Several new difficulties arise and many problems still remain to be solved. We list the ones we feel particularly interesting in the final section. Mathematics Subject Classification: 35J65; 35J40.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics and Statistics
سال: 2021
ISSN: 1549-3644
DOI: 10.3844/jmssp.2021.13.21